The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Face recognition in static images and video sequences captured in unconstrained recording conditions is one of the most widely studied topics in computer vision due to its extensive applications in surveillance, law enforcement, bio-metrics, marketing, and so forth. Recently, methodologies that achieve good performance have been presented in top-tier computer vision conferences (e.g., ICCV, CVPR, ECCV etc.) and great progress has been achieved in face recognition with deep learning-based methods. Even though comprehensive benchmarks and extensive efforts exist for deep face recognition, very limited effort has been made towards benchmarking lightweight deep face recognition, which aims at model compactness and energy efficiency to enable efficient system deployment. In ICCV 2019, we make a significant step further and propose a new comprehensive benchmark, as well as organise the first challenge & workshop for lightweight deep face recognition.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.