The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
One of the challenges in computational acoustics is the identification of models that can simulate and predict the physical behavior of a system generating an acoustic signal. Whenever such models are used for commercial applications, an additional constraint is the time to market, making automation of the sound design process desirable. In previous works, a computational sound design approach has been proposed for the parameter estimation problem involving timbre matching by deep learning, which was applied to the synthesis of pipe organ tones. In this paper, we refine previous results by introducing the former approach in a multi-stage algorithm that also adds heuristics and a stochastic optimization method operating on perceptually motivated objective cost functions. The optimization method shows to be able to refine the first estimate given by the deep learning approach and substantially improve the objective metrics, with the additional benefit of reducing the sound design process time. Subjective listening tests are also conducted to gather additional insights on the results.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.