A Multi-Stage Algorithm for Acoustic Physical Model Parameters Estimation

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

A Multi-Stage Algorithm for Acoustic Physical Model Parameters Estimation

By: 
Leonardo Gabrielli; Stefano Tomassetti; Stefano Squartini; Carlo Zinato; Stefano Guaiana

One of the challenges in computational acoustics is the identification of models that can simulate and predict the physical behavior of a system generating an acoustic signal. Whenever such models are used for commercial applications, an additional constraint is the time to market, making automation of the sound design process desirable. In previous works, a computational sound design approach has been proposed for the parameter estimation problem involving timbre matching by deep learning, which was applied to the synthesis of pipe organ tones. In this paper, we refine previous results by introducing the former approach in a multi-stage algorithm that also adds heuristics and a stochastic optimization method operating on perceptually motivated objective cost functions. The optimization method shows to be able to refine the first estimate given by the deep learning approach and substantially improve the objective metrics, with the additional benefit of reducing the sound design process time. Subjective listening tests are also conducted to gather additional insights on the results.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel