The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
This letter investigates how to place the received-signal-strength (RSS) sensors to improve the static target localization accuracy in the three-dimensional (3-D) space. By using the A-optimality criterion, i.e., minimizing the trace of the inverse Fisher information matrix (FIM), a new optimal RSS sensor placement strategy is developed when sensors can be placed freely in the 3-D space. The smallest reachable trace of Cramér–Rao lower bound, i.e., the inverse FIM, is derived with the corresponding optimal sensor-target geometries. Besides, a resistor network method and a special configuration strategy are proposed to quickly determine the optimal geometries. The findings are concluded in three remarks, which are used to evaluate and improve the estimation accuracy. Simulation examples verified these findings.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.