Skip to main content

TASLPRO Articles

Blockwise Weighted Least Square Active Noise Control for CPU-GPU Architecture

Active noise control (ANC) is a technology which lowers the noise level by using the principle of destructive interference of sound wave. Even though recent developments in digital signal processing (DSP) made it possible to implement ANC algorithms in real-time, insufficient computational power is still one of the challenges to solve. In the previous research, as a way of overcoming the lack of computational power, CPU-GPU architecture was proposed so that ANC algorithms utilize the massive computing power of GPU without suffering from the block data transfer between CPU and GPU memories.

Read more

Global and Local Simplex Representations for Multichannel Source Separation

The problem of blind audio source separation (BASS) in noisy and reverberant conditions is addressed by a novel approach, termed Global and LOcal Simplex Separation (GLOSS), which integrates full- and narrow-band simplex representations. We show that the eigenvectors of the correlation matrix between time frames in a certain frequency band form a simplex that organizes the frames according to the speaker activities in the corresponding band. 

Read more

A Vector Quantized Variational Autoencoder (VQ-VAE) Autoregressive Neural F0 Model for Statistical Parametric Speech Synthesis

Recurrent neural networks (RNNs) can predict fundamental frequency (F 0 ) for statistical parametric speech synthesis systems, given linguistic features as input. However, these models assume conditional independence between consecutive F 0 values, given the RNN state. In a previous study, we proposed autoregressive (AR) neural F 0 models to capture the causal dependency of successive F 0 values.

Read more