CNN Fixations: An Unraveling Approach to Visualize the Discriminative Image Regions

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

CNN Fixations: An Unraveling Approach to Visualize the Discriminative Image Regions

By: 
Konda Reddy Mopuri, Utsav Garg, R. Venkatesh Babu

Deep convolutional neural networks (CNNs) have revolutionized the computer vision research and have seen unprecedented adoption for multiple tasks, such as classification, detection, and caption generation. However, they offer little transparency into their inner workings and are often treated as black boxes that deliver excellent performance. In this paper, we aim at alleviating this opaqueness of CNNs by providing visual explanations for the network's predictions. Our approach can analyze a variety of CNN-based models trained for computer vision applications, such as object recognition and caption generation. Unlike the existing methods, we achieve this via unraveling the forward pass operation. The proposed method exploits feature dependencies across the layer hierarchy and uncovers the discriminative image locations that guide the network's predictions. We name these locations CNN fixations, loosely analogous to human eye fixations. Our approach is a generic method that requires no architectural changes, additional training, or gradient computation, and computes the important image locations (CNN fixations). We demonstrate through a variety of applications that our approach is able to localize the discriminative image locations across different network architectures, diverse vision tasks, and data modalities.

SPS on Facebook

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar