The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In this paper, we present a novel Bayesian classification framework of the matrix variate Bingham distributions with the inclusion of its normalizing constant and develop a consistent general parametric modeling framework based on the Grassmann manifolds. To calculate the normalizing constants of the Bingham model, this paper extends the method of saddle-point approximation (SPA) to a new setting. Furthermore, it employs the standard theory of maximum likelihood estimation (MLE) to evaluate the involved parameters in the used probability density functions. The validity and performance of the proposed approach are tested on 14 real-world visual classification databases. We have compared the classification performance of our proposed approach with the baselines from the previous related approaches. The comparison shows that on most of the databases, the performance of our approach is superior.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.