Parametric Classification of Bingham Distributions Based on Grassmann Manifolds

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Parametric Classification of Bingham Distributions Based on Grassmann Manifolds

By: 
Muhammad Ali; Junbin Gao; Michael Antolovich

In this paper, we present a novel Bayesian classification framework of the matrix variate Bingham distributions with the inclusion of its normalizing constant and develop a consistent general parametric modeling framework based on the Grassmann manifolds. To calculate the normalizing constants of the Bingham model, this paper extends the method of saddle-point approximation (SPA) to a new setting. Furthermore, it employs the standard theory of maximum likelihood estimation (MLE) to evaluate the involved parameters in the used probability density functions. The validity and performance of the proposed approach are tested on 14 real-world visual classification databases. We have compared the classification performance of our proposed approach with the baselines from the previous related approaches. The comparison shows that on most of the databases, the performance of our approach is superior.

SPS on Twitter

  • The Brain Space Initiative Talk Series continues this Friday, 24 September at 11:00 AM EDT when Dr. Jessica Damoise… https://t.co/DHFOzEXvMJ
  • The 2022 membership year has begun! Join our community of more than 17,000 signal processing and data science profe… https://t.co/arfJKa0oaW
  • Join us this Tuesday, 21 September for the Women in Signal Processing event at ICIP 2021! Registration available on… https://t.co/hXXZ61zLBe
  • The SPACE Webinar Series continues this Tuesday, 21 September when Dr. Bin Dong presents "Data- and Task-Driven CT… https://t.co/dkwz0lb2Jk
  • Join SPS President Ahmed Tewfik on Wednesday, 22 September for the IEEE Signal Processing Society Town Hall in conj… https://t.co/31AOCWXvam

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar