Dynamic Cross-Layer Signaling Exchange for Real-Time and On-Demand Multimedia Streams

You are here

IEEE Transactions on Multimedia

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Dynamic Cross-Layer Signaling Exchange for Real-Time and On-Demand Multimedia Streams

By: 
Fuad Shamieh; Xianbin Wang

Multimedia streams consume a significant chunk of the consumer Internet traffic exchanged and will continue to do so due to the ever-increasing connection among people, businesses, and industries. To cope with the deviation of the Internet's intended use, unreliable underlying infrastructure, and best effort protocols while leveraging existing technologies, Hypertext Transfer Protocol Adaptive Streaming is utilized by numerous multimedia services. Performance of HAS-based streaming services is limited by the growing control overhead generated by the Transmission Control Protocol/Internet Protocol (TCP/IP) stack as the stream length, multimedia fidelity, and network conditions vary. In this paper, a novel cross-layer steganographic-enabled signaling scheme is proposed to reduce service provider costs while improving multimedia session performance and maintaining expected Quality-of-Service (QoS). The proposed scheme is designed to encode control stream messages from any TCP/IP layer within payload messages to reduce the total amount of overhead exchanged, thereby decreasing resource utilization within source and intermediate nodes. Furthermore, the encoding scheme probes network conditions and session statistics for adaptive decision-making to enable real-time pliability of the proposed process. A utility function is developed to find the optimal cost savings where simulations are conducted to verify the designs. The proposed solution is then implemented using VideoLan Media Player transceivers residing in linux containers virtual machines, where a multimedia file is exchanged in the popular Advanced Video Coding (H.264) format. The results show a decrease in bandwidth and average queue waiting time costs of 4.71% and 29.61%, respectively, with a throughput increase of 5.77%.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel