The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Time-of-arrival (TOA) based localization plays a central role in current and future localization systems. Such systems, exploiting the fine delay resolution properties of wideband and ultra-wideband (UWB) signals, are particularly attractive for ranging under harsh propagation conditions in which significant multipath may be present. While multipath has been traditionally considered detrimental in the design of TOA estimators, it can be exploited to benefit ranging. This paper investigates the impact of a priori multipath information on TOA estimation. To this end, bounds on the performance of TOA estimation in dense multipath channels are provided and discussed under different operating conditions. The effects of channel dispersion and transmission bandwidth on ranging systems are investigated showing that, contrary to communication systems, diversity behavior is only exhibited in the medium signal-to-noise ratio regime.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.