The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Polar codes have received recent attention due to their potential to be applied in advanced wireless communication protocols such as the fifth generation mobile communication system (5G). Among the existing decoding algorithms, Belief Propagation (BP) exhibits high-throughput, low-latency, and soft output with a high hardware cost. Stochastic computing, as a form of approximate computing, provides a potential low-cost implementation solution for the BP algorithm. However, existing stochastic BP decoders suffer from a relatively long decoding latency resulting in low hardware efficiency. In this paper, a novel bit-wise iterative stochastic decoding architecture for the BP algorithm is proposed to improve the throughput and hardware efficiency. By utilizing the frozen bits of polar codes and stochastic computing, multiple novel optimization methods are presented to further speed up convergence and increase the hardware efficiency.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.