SPS Webinar, 2 August 2021: Learning a Convolutional Neural Network for Image Compact-Resolution

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

10 years of news and resources for members of the IEEE Signal Processing Society

SPS Webinar, 2 August 2021: Learning a Convolutional Neural Network for Image Compact-Resolution

Upcoming SPS Webinar

Title: Learning a Convolutional Neural Network for Image Compact-Resolution
Date: 2 August 2021
Time: 9:00 AM ET (New York time)
Duration: Approximately 1 Hour
Presenters: Dr. Yue Li

Based on the IEEE Xplore® article: Learning a Convolutional Neural Network for Image Compact-Resolution
Published: IEEE Transactions on Image Processing, September 2018
Download: Original article will be made freely available for download for 48 hours from the day of the webinar, on IEEE Xplore®

 

Register for the Webinar

 

About the topic:

We study the dual problem of image super-resolution (SR), which we term image compact-resolution (CR). Opposite to image SR that hallucinates a visually plausible high-resolution image given a low-resolution input, image CR provides a low-resolution version of a high-resolution image, such that the low-resolution version is both visually pleasing and as informative as possible compared to the high-resolution image. We propose a convolutional neural network (CNN) for image CR, namely, CNN-CR, inspired by the great success of CNN for image SR. Specifically, we translate the requirements of image CR into operable optimization targets for training CNN-CR: the visual quality of the compact resolved image is ensured by constraining its difference from a naively downsampled version and the information loss of image CR is measured by upsampling/super-resolving the compact-resolved image and comparing that to the original image. Accordingly, CNN-CR can be trained either separately or jointly with a CNN for image SR.

We explore different training strategies as well as different network structures for CNN-CR. Our experimental results show that the proposed CNN-CR clearly outperforms simple bicubic downsampling and achieves on average 2.25 dB improvement in terms of the reconstruction quality on a large collection of natural images. We further investigate two applications of image CR, i.e., low-bit-rate image compression and image retargeting. Experimental results show that the proposed CNN-CR helps achieve significant bits saving than High Efficiency Video Coding when applied to image compression and produce visually pleasing results when applied to image retargeting.


About the presenter:

Yue Li

Dr. Yue Li received the B.S. and Ph.D. degrees in electronic engineering from the University of Science and Technology of China, Hefei, China, in 2014 and 2019, respectively.

Dr. Yue Li is currently a research scientist with Bytedance Multimedia Lab in San Diego, CA, USA. His research interests include image/video coding and processing.

 

SPS on Twitter

  • Join the Brain Space Initiative for another virtual mixing event on Wednesday, 27 October! Grab a coffee and meet w… https://t.co/KA3kuPUGw0
  • We're proud to sponsor a new journal, IEEE Transactions on Quantum Engineering, publishing regular, review, and tut… https://t.co/cZskrh9cvX
  • We are now seeking mentors and students for the launch of a new initiative, Mentoring Experiences for Underrepresen… https://t.co/i9SarNyKm9
  • This Wednesday, 13 October, join the Women in Signal Processing Committee for an IEEE Day webinar, "Promoting Diver… https://t.co/HrtVGqpwFx
  • New SPS Webinar! On Friday, 29 October, join Dr. Jérôme Gilles for "Empirical Wavelets," based on his original arti… https://t.co/eftMlvByhm

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar