OJSP Volume 2 | 2021

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.


OJSP Volume 2 | 2021

Quadrature spatial modulation (QSM) isa recently proposed multiple-input multiple-output (MIMO) wireless transmission paradigm that has garnered considerable research interest owing to its relatively high spectral efficiency. QSM essentially enhances the spatial multiplexing gain while maintaining all the inherent advantages of spatial modulation (SM).

Identification of decompressed JPEG images, especially those compressed with high JPEG quality factors, is a challenging issue in image forensics. Furthermore, the applicability of the existing JPEG forensic detectors in forgery localization is limited by their inability to cope with spatial misalignment in the 8×8 JPEG grid.

This work exploits Riemannian manifolds to build a sequential-clustering framework able to address a wide variety of clustering tasks in dynamic multilayer (brain) networks via the information extracted from their nodal time-series. The discussion follows a bottom-up path, starting from feature extraction from time-series and reaching up to Riemannian manifolds (feature spaces) to address clustering tasks such as state clustering, community detection (a.k.a. network-topology identification), and subnetwork-sequence tracking. 

We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. 

Constant-modulus sequence set with low peak side-lobe level is a necessity for enhancing the performance of modern active sensing systems like Multiple Input Multiple Output (MIMO) RADARs. In this paper, we consider the problem of designing a constant-modulus sequence set by minimizing the peak side-lobe level, which can be cast as a non-convex minimax problem, and propose a Majorization-Minimization technique based iterative monotonic algorithm named as the PSL minimizer.

SPS on Twitter

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar