Fast Recursive Nonnegative Standard and Hierarchical Tucker Decomposition

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Fast Recursive Nonnegative Standard and Hierarchical Tucker Decomposition

By: 
Krzysztof Fonał; Rafał Zdunek

This letter proposes a new approach to nonnegative Tucker decomposition, which assumes recursive updates of latent factors with any nonnegative matrix factorization algorithm. The proposed strategy is extended to the nonnegatively constrained hierarchical Tucker decomposition model. Numerical experiments confirmed that the proposed algorithms have lower computational complexities and demonstrate improved performance compared to their baseline counterparts.

SPS on Twitter

  • Our Biomedical Imaging and Signal Processing Webinar Series continues on Tuesday, 5 July when Michael Unser present… https://t.co/7bYh8ZPHI0
  • Join us TODAY at 11:00 AM ET when the Brain Space Initiative Talk Series continues with Dr. Tianming Liu presenting… https://t.co/MEfnzk6dAE
  • Our 75th anniversary is approaching in 2023, and we're celebrating with a Special Issue of IEEE Signal Processing M… https://t.co/U6UNv8kLSO
  • The SPS Webinar Series continues on Monday, 20 June when Dr. Zhijin Qin presents "Semantic Communications: Principl… https://t.co/FhI7aP3GLi
  • CALL FOR PROPOSALS: Now seeking proposals for the 2024 IEEE International Workshop on Machine Learning for Signal P… https://t.co/Stt6OG2qo7

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar