Robust Downlink Transmit Optimization Under Quantized Channel Feedback via the Strong Duality for QCQP

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Robust Downlink Transmit Optimization Under Quantized Channel Feedback via the Strong Duality for QCQP

Xianming Lin; Yongwei Huang; Wing-Kin Ma

Consider a robust multiple-input single-output downlink beamforming optimization problem in a frequency division duplexing system. The base station (BS) sends training signals to the users, and every user estimates the channel coefficients, quantizes the gain and the direction of the estimated channel and sends them back to the BS. Suppose that the channel state information at the transmitter is imperfectly known mainly due to the channel direction quantization errors, channel estimation errors and outdated channel effects. The actual channel is modeled as in an uncertainty set composed of two inequality homogeneous and one equality inhomogeneous quadratic constraints, in order to account for the aforementioned errors and effects. Then the transmit power minimization problem is formulated subject to robust signal-to-noise-plus-interference ratio constraints. Each robust constraint is transformed equivalently into a quadratic matrix inequality (QMI) constraint with respect to the beamforming vectors. The transformation is accomplished by an equivalent phase rotation process and the strong duality result for a quadratically constrained quadratic program. The minimization problem is accordingly turned into a QMI problem, and the problem is solved by a restricted linear matrix inequality relaxation with additional valid convex constraints. Simulation results are presented to demonstrate the performance of the proposed method, and show the efficiency of the restricted relaxation.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel