The last few years have witnessed a tremendous growth of the demand for wireless services and a significant increase of the number of mobile subscribers. A recent data traffic forecast from Cisco reported that the global mobile data traffic reached 1.2 zettabytes per year in 2016, and the global IP traffic will increase nearly threefold over the next 5 years. Based on these predictions, a 127-fold increase of the IP traffic is expected from 2005 to 2021. It is also anticipated that the mobile data traffic will reach 3.3 zettabytes per year by 2021, and that the number of mobile-connected devices will reach 3.5 per capita.
With such demands for higher data rates and for better quality of service (QoS), fifth generation (5G) standardization initiatives, whose initial phase was specified in June 2018 under the umbrella of Long Term Evolution (LTE) Release 15, have been under vibrant investigation. In particular, the International Telecommunication Union (ITU) has identified three usage scenarios (service categories) for 5G wireless networks: (i) enhanced mobile broadband (eMBB), (ii) ultra-reliable and low latency communications (uRLLC), and (iii) massive machine type communications (mMTC). The vast variety of applications for beyond 5G wireless networks has motivated the necessity of novel and more flexible physical layer (PHY) technologies, which are capable of providing higher spectral and energy efficiencies, as well as reduced transceiver implementations.
The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Signal processing has played a foundational role in the consumer electronics revolution of the past several decades. Mobile devices, smart-home technologies, digital cameras, and countless other cutting-edge products have benefited from signal processing-enabled innovations.
Signal processing’s impact on consumer technologies shows no signs of slowing down. In fact, in areas ranging from wireless communication to personal health and fitness devices to virtual reality systems, signal processing continues to serve as an essential and irreplaceable tool.
The wireless world is growing rapidly and so are the number of wireless technologies. To address the need for mobile devices that can seamlessly and efficiently accommodate communication on multiple bands, Cornell University engineers have developed a single-chip method for transmitting and receiving radio signals across a wide range of frequencies (Figure 1).
Building multiband support into ever-smaller communication devices, potentially down to the size of wearables, is not easy because each band requires a filter to block strong transmit signals from drowning out reception. A new software-defined distributed duplex technology, developed by Alyssa Apsel, a Cornell professor of electrical and computer engineering, and Alyosha Molnar, a Cornell associate professor of electrical and computer engineering, addresses this challenge. The technology they developed integrates all of the components necessary for multiband operation onto a single, field-programmable gate array (FPGA), an integrated circuit that can be programed in the field after manufacture.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Privacy Policy | Feedback
© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.