TCI Volume 6 | 2020

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2020

TCI Volume 6 | 2020

Three-dimensional (3-D) radar imaging can provide additional information along elevation dimension about the target with respect to the conventional 2-D radar imaging, but usually requires a huge amount of data collected over 3-D frequency-azimuth-elevation space, which motivates us to perform 3-D imaging by using sparsely sampled data. Traditional compressive sensing (CS) based 3-D imaging methods with sparse data convert the 3-D data into a long vector, and then complete the sensing and recovery steps.

The challenges of real world applications of the laser detection and ranging (Lidar) three-dimensional (3-D) imaging require specialized algorithms. In this paper, a new reconstruction algorithm for single-photon 3-D Lidar images is presented that can deal with multiple tasks. 

In this paper, we present a full view optical flow estimation method for plenoptic imaging. Our method employs the structure delivered by the four-dimensional light field over multiple views making use of superpixels. These superpixels are four dimensional in nature and can be used to represent the objects in the scene as a set of slanted-planes in three-dimensional space so as to recover a piecewise rigid depth estimate.

Binary tomography is concerned with the recovery of binary images from a few of their projections (i.e., sums of the pixel values along various directions). To reconstruct an image from noisy projection data, one can pose it as a constrained least-squares problem.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel