TCI Volume 6 | 2020

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

February, 2020

TCI Volume 6 | 2020

Three-dimensional reconstruction of tomograms from optical projection microscopy is confronted with several drawbacks. In this paper we employ iterative reconstruction algorithms to avoid streak artefacts in the reconstruction and explore possible ways to optimize two parameters of the algorithms, i.e., iteration number and initialization, in order to improve the reconstruction performance. As benchmarks for direct reconstruction evaluation in optical projection tomography are absent, we consider the assessment through the performance of the segmentation on the 3D reconstruction. In our explorative experiments we use the zebrafish model system which is a typical specimen for use in optical projection tomography system; and as such frequently used.

Recently, deep-learning based methods have been widely used for computed tomography (CT) reconstruction. However, most of these methods need extra steps to convert the sinogrmas into CT images and so their networks are not end-to-end. In this paper, we propose an end-to-end deep network for CT image reconstruction, which directly maps sparse sinogramss to CT images. Our network has three cascaded blocks, where the first block is used to denoise and interpolate the sinograms, the second to map the sinograms to CT images and the last to denoise the CT images.

The use of microwave tomography (MWT) in an industrial drying process is demonstrated in this feasibility study with synthetic measurement data. The studied imaging modality is applied to estimate the moisture content distribution in a polymer foam during the microwave drying process. Such moisture information is crucial in developing control strategies for controlling the microwave power for selective heating.

Perfusion computed tomography (PCT) is critical in detecting cerebral ischemic lesions. PCT examination with lowdose scans can effectively reduce radiation exposure to patients at the cost of degraded images with severe noise, and artifacts. Tensor total variation (TTV) models are powerful tools that can encode the regional continuous structures underlying a PCT object.

The modeling of phenomenological structure is a crucial aspect in inverse imaging problems. One emerging modeling tool in computer vision is the optimal transport framework. Its ability to model geometric displacements across an image's support gives it attractive qualities similar to optical flow methods that are effective at capturing visual motion, but are restricted to operate in significantly smaller state-spaces. 

Fusion based hyperspectral image (HSI) super-resolution method, which obtains a spatially high-resolution (HR) HSI by fusing a low-resolution (LR) HSI and an HR conventional image, has been a prevalent method for HSI super-resolution. One effective fusion based method is to cast HSI super-resolution into a unified optimization problem, where handcrafted priors such as sparse prior or low rank prior are always adopted to regularize the latent HR HSI to be optimized. 

The coded aperture snapshot spectral imager (CASSI) is a computational imaging system that acquires a three dimensional (3D) spectral data cube by a single or a few two dimensional (2D) measurements. The 3D data cube is reconstructed computationally. Binary on-off random coded apertures with square pixels are primarily implemented in CASSI systems to modulate the spectral images in the image plane.

Users of X-ray (micro-)CT in research environments often study many different types of objects, with many different research questions. For each new scan, the settings of the scan (number of angles, dose, cone angle) are chosen by the user, often based on how much time is available, the dose sensitivity of the sample, and geometrical characteristics of the particular CT-scanner that is used.

Sparsity and low-rank models have been popular for reconstructing images and videos from limited or corrupted measurements. Dictionary or transform learning methods are useful in applications such as denoising, inpainting, and medical image reconstruction.

Good temporal representations are crucial for video understanding, and the state-of-the-art video recognition framework is based on two-stream networks. In such framework, besides the regular ConvNets responsible for RGB frame inputs, a second network is introduced to handle the temporal representation, usually the optical flow (OF). 


SPS on Twitter

  • DEADLINE EXTENDED: The 7th Annual IEEE World Forum on Internet of Things is now accepting papers across a range of…
  • ONE WEEK OUT: The Brain Space Initiative Talk Series continues on Friday, 29 January when Juan (Helen) Zhou present…
  • DEADLINE EXTENDED: There's still time to submit your proposal to host the 2023 IEEE International Symposium on Biom…
  • The 35th Picture Coding Symposium is heading to Bristol, UK and is now accepting papers for their June event! Head…
  • Deadline to submit to has been extended to 25 January!

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar