Segmentation-Driven Optimization For Iterative Reconstruction in Optical Projection Tomography: An Exploration

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Segmentation-Driven Optimization For Iterative Reconstruction in Optical Projection Tomography: An Exploration

By: 
Xiaoqin Tang; Hermes A. J. Spaink;Rob C. van Wijk; Fons J. Verbeek

Three-dimensional reconstruction of tomograms from optical projection microscopy is confronted with several drawbacks. In this paper we employ iterative reconstruction algorithms to avoid streak artefacts in the reconstruction and explore possible ways to optimize two parameters of the algorithms, i.e., iteration number and initialization, in order to improve the reconstruction performance. As benchmarks for direct reconstruction evaluation in optical projection tomography are absent, we consider the assessment through the performance of the segmentation on the 3D reconstruction. In our explorative experiments we use the zebrafish model system which is a typical specimen for use in optical projection tomography system; and as such frequently used. In this manner data can be easily obtained from which a benchmark set can be built. For the segmentation approach we apply a two-dimensional U-net convolutional neural network because it is recognized to have a good performance in biomedical image segmentation. In order to prevent the training from getting stuck in local minima, a novel learning rate schema is proposed. This optimization achieves a lower training loss during the training process, as compared to an optimal constant learning rate. Our experiments demonstrate that the approach to the benchmarking of iterative reconstruction via results of segmentation is very useful. It contributes an important tool to the development of computational tools for optical projection tomography.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel