Panoramic Robust PCA for Foreground–Background Separation on Noisy, Free-Motion Camera Video

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Panoramic Robust PCA for Foreground–Background Separation on Noisy, Free-Motion Camera Video

Brian E. Moore; Chen Gao; Raj Rao Nadakuditi

This paper presents a new robust PCA method for foreground-background separation on freely moving camera video with possible dense and sparse corruptions. Our proposed method registers the frames of the corrupted video and then encodes the varying perspective arising from camera motion as missing data in a global model. This formulation allows our algorithm to produce a panoramic background component that automatically stitches together corrupted data from partially overlapping frames to reconstruct the full field of view. We model the registered video as the sum of a low-rank component that captures the background, a smooth component that captures the dynamic foreground of the scene, and a sparse component that isolates possible outliers and other sparse corruptions in the video. The low-rank portion of our model is based on a recent low-rank matrix estimator (OptShrink) that has been shown to yield superior low-rank subspace estimates in practice. To estimate the smooth foreground component of our model, we use a weighted total variation framework that enables our method to reliably decouple the true foreground of the video from sparse corruptions. We perform extensive numerical experiments on both static and moving camera video subject to a variety of dense and sparse corruptions. Our experiments demonstrate the state-of-the-art performance of our proposed method compared to existing methods both in terms of foreground and background estimation accuracy.

SPS on Twitter

  • SPS WEBINAR: Join us on Tuesday, 2 August for a new SPS Webinar, when Dr. Yue Li presents "Learning a Convolutional…
  • Registration for ICIP 2021 is now open! This hybrid event will take place 19-22 September, with the in-person compo…
  • The Brain Space Initiative Talk Series continues on Friday, 30 July when Dr. Ioulia Kovelman presents "The Bilingua…
  • There’s still time to register your team to win the US$5,000 grand prize in the 5-Minute Video Clip Contest, “Autom…
  • Join the SPS Vizag Bay, Long Island, and Finland Chapters for the Seasonal School on Signal Processing and Communic…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar