Outlier Dirichlet Mixture Mechanism: Adversarial Statistical Learning for Anomaly Detection in the Fog

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Outlier Dirichlet Mixture Mechanism: Adversarial Statistical Learning for Anomaly Detection in the Fog

By: 
Nour Moustafa; Kim-Kwang Raymond Choo; Ibrahim Radwan; Seyit Camtepe

Current anomaly detection systems (ADSs) apply statistical and machine learning algorithms to discover zero-day attacks, but such algorithms are vulnerable to advanced persistent threat actors. In this paper, we propose an adversarial statistical learning mechanism for anomaly detection, outlier Dirichlet mixture-based ADS (ODM-ADS), which has three new capabilities. First, it can self-adapt against data poisoning attacks that inject malicious instances in the training phase for disrupting the learning process. Second, it establishes a statistical legitimate profile and considers variations from the baseline of the profile as anomalies using a proposed outlier function. Third, to deal with dynamic and large-scale networks such as Internet of Things and cloud and fog computing, we suggest a framework for deploying the mechanism as Software as a Service in the fog nodes. The fog enables the proposed mechanism to concurrently process streaming data at the edge of the network. The ODM-ADS mechanism is evaluated using both NSL-KDD and UNSW-NB15 datasets, whose findings indicate that ODM-ADS outperforms seven other peer algorithms in terms of accuracy, detection rates, false positive rates, and computational time.

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar