Double Bayesian Smoothing as Message Passing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Double Bayesian Smoothing as Message Passing

By: 
Pasquale Di Viesti; Giorgio Matteo Vitetta; Emilio Sirignano

Recently, a novel method for developing filtering algorithms, based on the interconnection of two Bayesian filters and called double Bayesian filtering, has been proposed. In this manuscript we show that the same conceptual approach can be exploited to devise a new smoothing method, called double Bayesian smoothing. A double Bayesian smoother combines a double Bayesian filter, employed in its forward pass, with the interconnection of two backward information filters used in its backward pass. As a specific application of our general method, a detailed derivation of double Bayesian smoothing algorithms for conditionally linear Gaussian systems is illustrated. Numerical results for two specific dynamic systems evidence that these algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other smoothing techniques recently appeared in the literature.

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar