Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio

By: 
Taras Bodnar; Nestor Parolya; Erik Thorsén

In this paper, new results in random matrix theory are derived, which allow us to construct a shrinkage estimator of the global minimum variance (GMV) portfolio when the shrinkage target is a random object. More specifically, the shrinkage target is determined as the holding portfolio estimated from previous data. The theoretical findings are applied to develop theory for dynamic estimation of the GMV portfolio, where the new estimator of its weights is shrunk to the holding portfolio at each time of reconstruction. Both cases with and without overlapping samples are considered in the paper. The non-overlapping samples corresponds to the case when different data of the asset returns are used to construct the traditional estimator of the GMV portfolio weights and to determine the target portfolio, while the overlapping case allows intersections between the samples. The theoretical results are derived under weak assumptions imposed on the data-generating process. No specific distribution is assumed for the asset returns except from the assumption of finite 4+ε , ε>0 , moments. Also, the population covariance matrix with unbounded largest eigenvalue can be considered. The performance of new trading strategies is investigated via an extensive simulation. Finally, the theoretical findings are implemented in an empirical illustration based on the returns on stocks included in the S&P 500 index.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel