The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
This paper addresses the problem of distributed task offloading centred at individual user terminals in a cellular multi-access edge computing (MEC) system. We introduce an online learning-assisted algorithm based on distributed bandit optimization (DBO) to cope with time-varying cost and time-varying constraint functions with unknown statistics on-the-go. The proposed algorithm jointly exploits the projected dual gradient iterations and a greedy method as well as a single broadcast communicating the MEC states to the users at the end of each decision cycle to minimize task computing-communication delay in the long run at user terminals. To track the performance of the proposed online learning algorithm over time, we define a dynamic regret to assess the closeness of the underlying delay cost of the DBO to a clairvoyant dynamic optimum, and an aggregate violation metric to evaluate the asymptotic satisfaction of the constraints. We derive lower and upper bounds for dynamic regret as well as an upper-bound for the aggregate violation and show that the upper-bounds are sub-linear under sub-linear accumulated hindsight variations. The simulation results and comparisons confirm the effectiveness of the proposed algorithm in the long run.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.