Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective

By: 
Zai Yang; Petre Stoica; Jinhui Tang

A major drawback of subspace methods for direction-of-arrival estimation is their poor performance in the presence of coherent sources. Spatial smoothing is a common solution that can be used to restore the performance of these methods in such a case at the cost of increased array size requirement. In this paper, a Hadamard product perspective of the source resolvability problem of spatial-smoothing-based subspace methods is presented. The array size that ensures resolvability is derived as a function of the source number, the rank of the source covariance matrix, and the source coherency structure. This new result improves upon previous ones and recovers them in special cases. It is obtained by answering a long-standing question first asked explicitly in 1973 as to when the Hadamard product of two singular positive-semidefinite matrices is strictly positive definite. The problem of source identifiability is discussed as an extension. Numerical results are provided that corroborate our theoretical findings.

Table of Contents:

TSP Featured Articles

SPS on Facebook

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar