The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
One of the biggest challenges in multimicrophone applications is the estimation of the parameters of the signal model, such as the power spectral densities (PSDs) of the sources, the early (relative) acoustic transfer functions of the sources with respect to the microphones, the PSD of late reverberation, and the PSDs of microphone-self noise. Typically, existing methods estimate subsets of the aforementioned parameters and assume some of the other parameters to be known a priori. This may result in inconsistencies and inaccurately estimated parameters and potential performance degradation in the applications using these estimated parameters. So far, there is no method to jointly estimate all the aforementioned parameters. In this paper, we propose a robust method for jointly estimating all the aforementioned parameters using confirmatory factor analysis. The estimation accuracy of the signal-model parameters thus obtained outperforms existing methods in most cases. We experimentally show significant performance gains in several multimicrophone applications over state-of-the-art methods.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.