Towards Textual Out-of-Domain Detection Without In-Domain Labels

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Towards Textual Out-of-Domain Detection Without In-Domain Labels

By: 
Di Jin;Shuyang Gao;Seokhwan Kim;Yang Liu;Dilek Hakkani-Tür

In many real-world settings, machine learning models need to identify user inputs that are out-of-domain (OOD) so as to avoid performing wrong actions. This work focuses on a challenging case of OOD detection, where no labels for in-domain data are accessible (e.g., no intent labels for the intent classification task). To this end, we first evaluate different language model based approaches that predict likelihood for a sequence of tokens. Furthermore, we propose a novel representation learning based method by combining unsupervised clustering and contrastive learning so that better data representations for OOD detection can be learned. Through extensive experiments, we demonstrate that this method can significantly outperform likelihood-based methods and can be even competitive to the state-of-the-art supervised approaches with label information.

SPS on Twitter

  • CALL FOR PROPOSALS: Now seeking proposals for the 2024 IEEE International Workshop on Machine Learning for Signal P… https://t.co/l7V1bF2qhT
  • The DEGAS Webinar Series continues on Thursday, 19 May when Dr. Usman A. Khan presents "Distributed stochastic non-… https://t.co/AbfwVL0Yne
  • The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Special Issue on Signal… https://t.co/PbuzgYLigt
  • RT : New graduates transitioning to the next stage of their career often have several questions. In this video, I share… https://t.co/WA4aRlKNRn
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is accepting papers for a Special Issue… https://t.co/4RCWojWXO0

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar