IEEE Transactions on Image Processing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

To promote the applications of semantic segmentation, quality evaluation is important to assess different algorithms and guide their development and optimization. In this paper, we establish a subjective semantic segmentation quality assessment database based on the stimulus-comparison method. Given that the database reflects the relative quality of semantic segmentation result pairs...

In this paper, we present a novel Bayesian classification framework of the matrix variate Bingham distributions with the inclusion of its normalizing constant and develop a consistent general parametric modeling framework based on the Grassmann manifolds. To calculate the normalizing constants of the Bingham model, this paper extends the method of saddle-point approximation (SPA) to a new setting.

In a typical communication pipeline, images undergo a series of processing steps that can cause visual distortions before being viewed. Given a high quality reference image, a reference (R) image quality assessment (IQA) algorithm can be applied after compression or transmission. However, the assumption of a high quality reference image is often not fulfilled in practice, thus contributing to less accurate quality predictions when using stand-alone R IQA models.

In depth map coding, rate-distortion optimization for those pixels that will cause occlusion in view synthesis is a rather challenging task, since the synthesis distortion estimation is complicated by the warping competition and the occlusion order can be easily changed by the adopted optimization strategy. 

Visual attention is an important mechanism in the human visual system (HVS) and there have been numerous saliency detection algorithms designed for 2D images/video recently. However, the research for fixation detection of stereoscopic video is still limited and challenging due to the complicated depth and motion information. 

In this paper, a self-guiding multimodal LSTM (sgLSTM) image captioning model is proposed to handle an uncontrolled imbalanced real-world image-sentence dataset. We collect a FlickrNYC dataset from Flickr as our testbed with 306,165 images and the original text descriptions uploaded by the users are utilized as the ground truth for training.

We present a novel global non-rigid registration method for dynamic 3D objects. Our method allows objects to undergo large non-rigid deformations and achieves high-quality results even with substantial pose change or camera motion between views. In addition, our method does not require a template prior and uses less raw data than tracking-based methods since only a sparse set of scans is needed.

We study the problem of image alignment for panoramic stitching. Unlike most existing approaches that are feature-based, our algorithm works on pixels directly, and accounts for errors across the whole images globally. Technically, we formulate the alignment problem as rank-1 and sparse matrix decomposition over transformed images, and develop an efficient algorithm for solving this challenging non-convex optimization problem.

Image classification is an essential and challenging task in computer vision. Despite its prevalence, the combination of the deep convolutional neural network (DCNN) and the Fisher vector (FV) encoding method has limited performance since the class-irrelevant background used in the traditional FV encoding may result in less discriminative image features.

This paper presents an intelligent system named Magic-wall, which enables visualization of the effect of room decoration automatically. Concretely, given an image of the indoor scene and a preferred color, the Magic-wall can automatically locate the wall regions in the image and smoothly replace the existing wall with the required one. 

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel