IEEE Transactions on Multimedia

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Self-learning super-resolution (SLSR) algorithms have the advantage of being independent of an external training database. This paper proposes an SLSR algorithm that uses convolutional principal component analysis (CPCA) and random matching. The technologies of CPCA and random matching greatly improve the efficiency of self-learning. There are two main steps in this algorithm: forming the training and testing the data sets and patch matching. In the data set forming step, we propose the CPCA to extract the low-dimensional features of the data set.

This paper presents a joint dehazing and denoising scheme for an image taken in hazy conditions. Conventional image dehazing methods may amplify the noise depending on the distance and density of the haze. To suppress the noise and improve the dehazing performance, an imaging model is modified by adding the process of amplifying the noise in hazy conditions. This model offers depth-chromaticity compensation regularization for the transmission map and chromaticity-depth compensation regularization for dehazing the image.

The problem of authenticating a re-sampled image has been investigated over many years. Currently, however, little research proposes a statistical model-based test, resulting in that statistical performance of the resampling detector could not be completely analyzed. To fill the gap, we utilize a parametric model to expose the traces of resampling forgery, which is described with the distribution of residual noise. Afterward, we propose a statistical model describing the residual noise from a resampled image.

The scope of the Periodical is the various aspects of research in multimedia technology and applications of multimedia, including, but not limited to, circuits, networking, signal processing, systems, software, and systems integration, as represented by the Fields of Interest of the sponsors.

The Multimedia Prize Paper Award is an annual award for an original paper in the field of multimedia published in the IEEE Transactions on Multimedia in the previous three calendar years. Authors of a single paper cannot receive the Multimedia Prize Paper Award in three consecutive years. The prize shall be a certificate and an honorarium of up to $500 per author. The total honorarium is not to exceed $1000. In the event that there are more than two authors, the maximum prize shall be divided equally among all authors and each shall receive a certificate.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel