Multi-Correlation Filters With Triangle-Structure Constraints for Object Tracking
Correlation filters (CFs) have been extensively used in tracking tasks due to their high efficiency although most of them regard the tracked target as a whole and are minimally effective in handling partial occlusion. In this study, we incorporate a part-based strategy into the framework of CFs and propose a novel multipart correlation tracker with triangle-structure constraints. Specifically, we train multiple CFs for the global object and local parts, which are then jointly applied to obtain the correlation response of any candidate during tracking.