Skip to main content

TCI Volume 10 | 2024

Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction

Motion artifact reduction is one of the important research topics in MR imaging, as the motion artifact degrades image quality and makes diagnosis difficult. Recently, many deep learning approaches have been studied for motion artifact reduction. Unfortunately, most existing models are trained in a supervised manner, requiring paired motion-corrupted and motion-free images, or are based on a strict motion-corruption model, which limits their use for real-world situations.

Read more

A 3-D Ultrasound Tomography Method for Bone Morphology Evaluation

Accurately imaging bones using ultrasound has been a long-standing challenge, primarily due to the high attenuation, significant acoustic impedance contrast at cortical boundaries, and the unknown distribution of sound velocity. Furthermore, two-dimensional (2-D) ultrasound bone imaging has limitations in diagnosing osteoporosis from a morphological perspective, as it lacks stereoscopic spatial information.

Read more

Differentiable Uncalibrated Imaging

We propose a differentiable imaging framework to address uncertainty in measurement coordinates such as sensor locations and projection angles. We formulate the problem as measurement interpolation at unknown nodes supervised through the forward operator. To solve it we apply implicit neural networks, also known as neural fields, which are naturally differentiable with respect to the input coordinates. We also develop differentiable spline interpolators which perform as well as neural networks, require less time to optimize and have well-understood properties.

Read more