TCI Volume 10 | 2024

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2024

TCI Volume 10 | 2024

Motion artifact reduction is one of the important research topics in MR imaging, as the motion artifact degrades image quality and makes diagnosis difficult. Recently, many deep learning approaches have been studied for motion artifact reduction. Unfortunately, most existing models are trained in a supervised manner, requiring paired motion-corrupted and motion-free images, or are based on a strict motion-corruption model, which limits their use for real-world situations.

Accurately imaging bones using ultrasound has been a long-standing challenge, primarily due to the high attenuation, significant acoustic impedance contrast at cortical boundaries, and the unknown distribution of sound velocity. Furthermore, two-dimensional (2-D) ultrasound bone imaging has limitations in diagnosing osteoporosis from a morphological perspective, as it lacks stereoscopic spatial information.

Indirect Time-of-Flight (iToF) sensors measure the received signal's phase shift or time delay to calculate depth. In realistic conditions, however, recovering depth is challenging as reflections from secondary scattering areas or translucent objects may interfere with the direct reflection, resulting in inaccurate 3D estimates. 

We propose a differentiable imaging framework to address uncertainty in measurement coordinates such as sensor locations and projection angles. We formulate the problem as measurement interpolation at unknown nodes supervised through the forward operator. To solve it we apply implicit neural networks, also known as neural fields, which are naturally differentiable with respect to the input coordinates. We also develop differentiable spline interpolators which perform as well as neural networks, require less time to optimize and have well-understood properties.

SPS ON X

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel