SPS Feed

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

The Latest News, Articles, and Events in Signal Processing

IEEE Transactions on Signal and Information Processing over Networks

The smoothness of graph signals has found desirable real applications for processing irregular (graph-based) signals. When the latent sources of the mixtures provided to us as observations are smooth graph signals, it is more efficient to use graph signal smoothness terms along with the classic independence criteria in Blind Source Separation (BSS) approaches. In the case of underlying graphs being known, Graph Signal Processing (GSP) provides valuable tools; however, in many real applications, these graphs can not be well-defined a priori and need to be learned from data. 

IEEE Transactions on Signal and Information Processing over Networks

We introduce graph wedgelets - a tool for data compression on graphs based on the representation of signals by piecewise constant functions on adaptively generated binary graph partitionings. The adaptivity of the partitionings, a key ingredient to obtain sparse representations of a graph signal, is realized in terms of recursive wedge splits adapted to the signal. For this, we transfer adaptive partitioning and compression techniques known for 2D images to general graph structures and develop discrete variants of continuous wedgelets and binary space partitionings.

IEEE Transactions on Signal and Information Processing over Networks

In many specific scenarios, accurateand practical cooperative learning is a commonly encountered challenge in multi-agent systems. Thus, the current investigation focuses on cooperative learning algorithms for multi-agent systems and underpins an alternate data-based neural network reinforcement learning framework. To achieve the data-based learning optimization, the proposed cooperative learning framework, which comprises two layers, introduces a virtual learning objective.

IEEE Transactions on Computational Imaging

Light Fields (LFs) are easily degraded by noise and low light. Low light LF enhancement and denoising are more challenging than single image tasks because the epipolar information among views should be taken into consideration. In this work, we propose a multiple stream progressive restoration network to restore the whole LF in just one forward pass. To make full use of the multiple views supplementary information and preserve the epipolar information, we design three types of input composed of view stacking.

IEEE Transactions on Computational Imaging

In the snapshot compressive imaging (SCI) field, how to explore priors for recovering the original high-dimensional data from its lower-dimensional measurements is a challenge. Recent plug-and-play efforts plugged by deep denoisers have achieved superior performance, and their convergences have been guaranteed under the assumption of bounded denoisers and the condition of diminishing noise levels. However, it is difficult to explicitly prove the bounded properties of existing deep denoisers due to complex network architectures.

IEEE Transactions on Computational Imaging

Images captured in low-light environments suffer from serious degradation due to insufficient light, leading to the performance decline of industrial and civilian devices. To address the problems of noise, chromatic aberration, and detail distortion for enhancing low-light images using existing enhancement methods, this paper proposes an integrated learning approach (LightingNet) for low-light image enhancement. 

IEEE Transactions on Computational Imaging

Reconstruction of CT images from a limited set of projections through an object is important in several applications ranging from medical imaging to industrial settings. As the number of available projections decreases, traditional reconstruction techniques such as the FDK algorithm and model-based iterative reconstruction methods perform poorly.

IEEE Transactions on Computational Imaging

Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( 2 and 1 regularization) and present novel stability results for p -regularized linear inverse problems for p(1,) . Our results guarantee Lipschitz continuity for small p and Hölder continuity for larger p . They generalize well to the Lp (Ω)  function spaces.

IEEE Signal Processing Letters

This letter proposes a generalised extended nested array with multiple subarrays (GENAMS) array via the maximum inter-element spacing (IES) constraint principle. Based on the IES set patterns of the two-sides extended nested array and the flexible extended nested array with multiple subarrays type-2, a generalised IES set pattern is derived.

IEEE Signal Processing Letters

3D face reconstruction from a single image still suffers from low accuracy and inability to recover textures in invisible regions. In this paper, we propose a method for generating a 3D portrait with complete texture. The coarse face-and-head model and texture parameters are obtained using 3D Morphable Model fitting. We design an image-geometric inverse renderer that acquires normal, albedo, and light to jointly reconstruct the facial details.

IEEE Signal Processing Letters

Iterative hard thresholding (IHT) and hard thresholding pursuit (HTP) are two kinds of classical hard thresholding-based algorithms widely used in compressed sensing. Restricted isometry constant (RIC) of sensing matrix which ensures the convergence of iterative algorithms plays a key role in guaranteeing successful recovery. In the analysis of sufficient condition to ensure recovery performance, the RIC δ3s is generally used in previous literature, while δ2s is rarely addressed. In this letter, we first show that the theoretical optimal step-length is 1 while using sufficient condition in terms of δ2s .

IEEE Signal Processing Letters

The correlation filter(CF)-based tracker is a classic and effective model in the field of visual tracking. For a long time, most CF-based trackers solved filters using only ridge regression equations with l2 -norm, which can make the trained model noisy and not sparse. As a result, we propose a model of adaptive sparse spatially-regularized correlation filters (AS2RCF). Aiming to suppress the noise mixed in the model, we improve it by introducing an l1 -norm spatial regularization term. 

IEEE Signal Processing Letters

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by estimating a global homography matrix between candidate images with point-feature-based matching or direct prediction. However, as real-world 3D scenes have point-variant photograph distances (depth), a unified homography matrix is not sufficient to depict the specific pixel-wise relations between two images.

IEEE Signal Processing Letters

Adversarial attack approaches to speaker identification either need high computational cost or are not very effective, to our knowledge. To address this issue, in this letter, we propose a novel generation-network-based approach, called symmetric saliency-based encoder-decoder (SSED), to generate adversarial voice examples to speaker identification.

IEEE Open Journal of Signal Processing

The prominent success of neural networks, mainly in computer vision tasks, is increasingly shadowed by their sensitivity to small, barely perceivable adversarial perturbations in image input. In this article, we aim at explaining this vulnerability through the framework of sparsity. We show the connection between adversarial attacks and sparse representations, with a focus on explaining the universality and transferability of adversarial examples in neural networks.

IEEE Open Journal of Signal Processing

An online topology estimation algorithm for nonlinear structural equation models (SEM) is proposed in this paper, addressing the nonlinearity and the non-stationarity of real-world systems. The nonlinearity is modeled using kernel formulations, and the curse of dimensionality associated with the kernels is mitigated using random feature approximation.

IEEE Open Journal of Signal Processing

The Discrete Wavelet Transform (DWT) has gained attention in the area of Multi-Carrier Modulation (MCM) because it can overcome some well known limitations of Discrete Fourier Transform (DFT) based MCM systems. Its improved spectral containment removes the need for a cyclic prefix, be it that appropriate equalization then has to be added as the cyclic convolution property no longer holds. Most DWT based MCM systems in the literature use Time-domain EQualizers (TEQs) to mitigate the channel distortion. 

IEEE Open Journal of Signal Processing

With the integration of communication and computing, it is expected that part of the computing is transferred to the transmitter side. In this paper we address the general problem of Frequency Modulation (FM) for function approximation through a communication channel. We exploit the benefits of the Discrete Cosine Transform (DCT) to approximate the function and design the waveform. In front of other approximation schemes, the DCT uses basis of controlled dynamic, which is a desirable property for a practical implementation. 

IEEE Open Journal of Signal Processing

In this paper, we consider robust channel estimation for a millimeter wave (mmWave) massive MIMO system with uniform planar arrays (UPA). For many gridless angle estimation methods of mmWave channels, the channel gains needs to be time-invariant during training. We propose a gridless method that is applicable to time-invariant and time-varying channels, and the proposed method is robust to channel variations. 

IEEE Open Journal of Signal Processing

Quantized constant envelope (QCE) transmission is a popular and effective technique to reduce the hardware cost and improve the power efficiency of 5G and beyond systems equipped with large antenna arrays. It has been widely observed that the number of quantization levels has a substantial impact on the system performance.

Pages

SPS ON X

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel