SPS Feed

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

The Latest News, Articles, and Events in Signal Processing

Medical University Vienna

OPTIMA group (https://optima.meduniwien.ac.at) is seeking an exceptionally motivated postdoc to strengthen our interdisciplinary team working on deep learning for medical image analysis. As part of our new initiative on Artificial Intelligence in Retina you will be leading exciting projects, at the interface of computer science and medicine.

June 29 - July 2, 2021
Location: Bristol, UK

Lecture Date: December 14, 2020 (Online lecture)
Chapter: Singapore
Chapter Chair: Lokesh Bheema Thiagarajan
Topic: Privacy-Preserving Localization and Recognition of Human Activities

IEEE Transactions on Signal Processing

Inspired by the recent success of deep neural networks and the recent efforts to develop multi-layer dictionary models, we propose a Deep Analysis dictionary Model (DeepAM) which is optimized to address a specific regression task known as single image super-resolution. Contrary to other multi-layer dictionary models, our architecture contains L layers of analysis dictionary and soft-thresholding operators to gradually extract high-level features and a layer of synthesis dictionary which is designed to optimize the regression task at hand.

IEEE Transactions on Signal Processing

This paper is focused on simultaneous target detection and angle estimation with a multichannel phased array radar. Resorting to a linearized expression for the array steering vector around the beam pointing direction, the problem is formulated as a composite binary hypothesis test where the unknowns, under the alternative hypothesis, include the target directional cosines displacements with respect to the array nominal coarse pointing direction. 

IEEE Transactions on Signal and Information Processing over Networks

Decentralized detection is one of the key tasks that a wireless sensor network (WSN) is faced to accomplish. Among several decision criteria, the Rao test is able to cope with an unknown (but parametrically-specified) sensing model, while keeping computational simplicity. To this end, the Rao test is employed in this paper to fuse multivariate data measured by a set of sensor nodes, each observing the target (or the desired) event via a nonlinear mapping function. 

IEEE Transactions on Signal and Information Processing over Networks

Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalized scheme and the sign-regressor scheme. Then, we conduct theoretical analysis for one of the schemes, i.e., the power-normalized one.

IEEE Transactions on Multimedia

Recently, saliency detection in a single image and co-saliency detection in multiple images have drawn extensive research interest in the vision and multimedia communities. In this paper, we investigate a new problem of co-saliency detection within a single image, i.e., detecting within-image co-saliency . By identifying common saliency within an image, e.g., highlighting multiple occurrences of an object class with similar appearance, this work can benefit many important applications, such as the detection of objects of interest, more robust object recognition, reduction of information redundancy, and animation synthesis. We propose a new bottom-up method to address this problem.

IEEE Transactions on Multimedia

Low-light image enhancement is important for high-quality image display and other visual applications. However, it is a challenging task as the enhancement is expected to improve the visibility of an image while keeping its visual naturalness. Retinex-based methods have well been recognized as a representative technique for this task, but they still have the following limitations. First, due to less-effective image decomposition or strong imaging noise, various artifacts can still be brought into enhanced results.face of an object. These patches can be applied to multiple regions of the object, thereby making it resistant to various attacks such as cropping, local deformation, local surface degradation, or printing errors. 

IEEE Transactions on Multimedia

We propose a new blind watermarking algorithm for 3D printed objects that has applications in metadata embedding, robotic grasping, counterfeit prevention, and crime investigation. Our method can be used on fused deposition modeling (FDM) 3D printers and works by modifying the printed layer thickness on small patches of the surface of an object. These patches can be applied to multiple regions of the object, thereby making it resistant to various attacks such as cropping, local deformation, local surface degradation, or printing errors. 

IEEE Transactions on Image Processing

Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pairs, and then directly measure the dissimilarity parts for producing a change map.

IEEE Transactions on Image Processing

The existing neural architecture search (NAS) methods usually restrict the search space to the pre-defined types of block for a fixed macro-architecture. However, this strategy will limit the search space and affect architecture flexibility if block proposal search (BPS) is not considered for NAS. As a result, block structure search is the bottleneck in many previous NAS works. In this work, we propose a new evolutionary algorithm referred to as latency EvoNAS (LEvoNAS) for block structure search, and also incorporate it to the NAS framework by developing a novel two-stage framework referred to as Block Proposal NAS (BP-NAS). 

IEEE Transactions on Information Forensics and Security

In this paper, a cyber-physical system (CPS) is considered, whose state estimation is done by a central controller (CC) using the measurements received from a wireless powered sensor network (WPSN) over fading channels. An adversary injects false data in this system by compromising some of the idle sensor nodes (SNs) of the WPSN. Using the WPSN for transmitting supervision and control data, in the aforementioned setting, makes the CPS vulnerable to both error and false data injection (FDI). 

IEEE Transactions on Information Forensics and Security

In this study, we propose a neural network-based face anti-spoofing algorithm using dual pixel (DP) sensor images. The proposed algorithm has two stages: depth reconstruction and depth classification. The first network takes a DP image pair as input and generates a depth map with a baseline of approximately 1 mm. Then, the classification network is trained to distinguish real individuals and planar attack shapes to produce a binary output.

IEEE Transactions on Computational Imaging

Three-dimensional reconstruction of tomograms from optical projection microscopy is confronted with several drawbacks. In this paper we employ iterative reconstruction algorithms to avoid streak artefacts in the reconstruction and explore possible ways to optimize two parameters of the algorithms, i.e., iteration number and initialization, in order to improve the reconstruction performance. As benchmarks for direct reconstruction evaluation in optical projection tomography are absent, we consider the assessment through the performance of the segmentation on the 3D reconstruction. In our explorative experiments we use the zebrafish model system which is a typical specimen for use in optical projection tomography system; and as such frequently used.

IEEE Transactions on Computational Imaging

Recently, deep-learning based methods have been widely used for computed tomography (CT) reconstruction. However, most of these methods need extra steps to convert the sinogrmas into CT images and so their networks are not end-to-end. In this paper, we propose an end-to-end deep network for CT image reconstruction, which directly maps sparse sinogramss to CT images. Our network has three cascaded blocks, where the first block is used to denoise and interpolate the sinograms, the second to map the sinograms to CT images and the last to denoise the CT images.

IEEE/ACM Transactions on Audio, Speech, and Language Processing

Speaker diarization is an important problem that is topical, and is especially useful as a preprocessor for conversational speech related applications. The objective of this article is two-fold: (i) segment initialization by uniformly distributing speaker information across the initial segments, and (ii) incorporating speaker discriminative features within the unsupervised diarization framework. In the first part of the work, a varying length segment initialization technique for Information Bottleneck (IB) based speaker diarization system using phoneme rate as the side information is proposed. This initialization distributes speaker information uniformly across the segments and provides a better starting point for IB based clustering. 

IEEE/ACM Transactions on Audio, Speech, and Language Processing

One practical requirement of the music copyright management is the estimation of music relative loudness, which is mostly ignored in existing music detection works. To solve this problem, we study the joint task of music detection and music relative loudness estimation. To be specific, we observe that the joint task has two characteristics, i.e., temporality and hierarchy, which could facilitate to obtain the solution. For example, a tiny fragment of audio is temporally related to its neighbor fragments because they may all belong to the same event, and the event classes of the fragment in the two tasks have a hierarchical relationship. Based on the above observation, we reformulate the joint task as hierarchical event detection and localization problem. To solve this problem, we further propose Hierarchical Regulated Iterative Networks (HRIN), which includes two variants, termed as HRIN-r and HRIN-cr, which are based on recurrent and convolutional recurrent modules. 

IEEE Signal Processing Letters

In depth map super-resolution (SR), a high-resolution color image plays an important role as guidance for preventing blurry depth boundaries. However, excessive/deficient use of the color image features often causes performance degradation such as texture-copying/edge-smoothing in flat/boundary areas. To alleviate these problems, this letter presents a simple yet effective method for enhancing the performance of the SR without requiring significant modifications to the original SR network. To this end, we present a self-selective concatenation (SSC), which is a substitute for the conventional feature concatenation. In the upsampling layers of the SR network, the SSC extracts spatial and channel attention from both color and depth features such that color features can be selectively used for depth SR.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel