Jonghye Woo (University of Southern California): “Variational Techniques for Cardiac Image Analysis: Algorithms and Applications”

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

10 years of news and resources for members of the IEEE Signal Processing Society

Jonghye Woo (University of Southern California): “Variational Techniques for Cardiac Image Analysis: Algorithms and Applications”

Jonghye Woo (University of Southern California): “Variational techniques for cardiac image analysis: algorithms and applications”, 2009. Advised by Prof. C.-C. Jay Kuo.

In this dissertation, the author investigates five image segmentation and registration techniques based on the variational formulation for medical imaging applications. First, a novel segmentation approach is proposed to jointly delineate the boundaries of epi- and endocardium of the left ventricle on Magnetic Resonance Imaging (MRI) under a variational framework using level sets. Second, techniques are developed to examine multimodal data integration with an electroanatomic mapping data and MRI images for computer-aided catheter ablation of atrial fibrillation accurately. Third, a multimodality image registration algorithm for the alignment of myocardial perfusion SPECT (MPS) and coronary computed tomography angiography scans is presented utilizing geometric features from a reliable segmentation of MPS volumes. Fourth, a nonlinear ultrasound image registration method is proposed using the intensity and the local phase information under a variational framework. Finally, a fully automatic and accurate nonlinear volume registration for longitudinal Coronary CT angiography scan pairs is developed. The proposed algorithms combine global displacement and local deformation using nonlinear volume co-registration with a volume-preserving constraint. Extensive computer simulations have been conducted and clinical validations have been performed to demonstrate the improved accuracy of the proposed techniques.

Click here to access the thesis or contact the author.

Table of Contents:

SPS on Twitter

  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special Iss… https://t.co/N0Dp4VBSAc
  • Join us tomorrow, Wednesday, 17 August at 10 AM Eastern as the SPS Webinar Series continues with Dr. Quiqiang Kong… https://t.co/aE2bQQAP99
  • The 2023 IEEE membership year begins today, which means that new members can join now and receive service through 3… https://t.co/WIGwc9iJCq
  • On 15 September 2022, we are excited to partner with and to bring you a webinar and roundtable,… https://t.co/we14OUl2QV
  • The SPS Webinar Series continues on Monday, 22 August when Dr. Yu-Huan Wu and Dr. Shanghua Gao present “Towards Des… https://t.co/ZkHjQLLn7L

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar