The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
With the widespread explosion of sensing and computing, an increasing number of industrial applications and an ever-growing amount of academic research generate massive multi-modal data from multiple sources. Gaussian distribution is the probability distribution ubiquitously used in statistics, signal processing, and pattern recognition. However, not all the data we are processing are Gaussian distributed. It has been found in recent studies that explicitly utilizing the non-Gaussian characteristics of data (e.g., data with bounded support, data with semi-bounded support, and data with L1/L2-norm constraint) can significantly improve the performance of practical systems. Hence, it is of particular importance and interest to make thorough studies of the non-Gaussian data and the corresponding non-Gaussian statistical models (e.g., beta distribution for bounded support data, gamma distribution for semi-bounded support data, and Dirichlet/vMF distribution for data with L1/L2-norm constraint).
In order to analyze and understand such kind of non-Gaussian data, the developments of related learning theories, statistical models, and efficient algorithms become crucial. The scope of this special issue is to provide theoretical foundations and ground-breaking models and algorithms to solve this challenge.
We invite authors to submit articles to address the aspects ranging from case studies of particular problems with non-Gaussian distributed data to novel learning theories and approaches, including (but not limited to):
Timeline
SUBMISSION DEADLINE: Oct 15, 2016
ACCEPTANCE DEADLINE: June 15, 2017
EXPECTED PUBLICATION DATE: Sep 15, 2017
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.