Fast and Provable Algorithms for Learning Two-Layer Polynomial Neural Networks

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Fast and Provable Algorithms for Learning Two-Layer Polynomial Neural Networks

By: 
Mohammadreza Soltani; Chinmay Hegde

In this paper, we bridge the problem of (provably) learning shallow neural networks with the well-studied problem of low-rank matrix estimation. In particular, we consider two-layer networks with quadratic activations, and focus on the under-parameterized regime where the number of neurons in the hidden layer is smaller than the dimension of the input. Our main approach is to “lift” the learning problem into a higher dimension, which enables us to borrow algorithmic techniques from low-rank matrix estimation. Using this intuition, we propose three novel, non-convex training algorithms. We support our algorithms with rigorous theoretical analysis, and show that all three enjoy a linear convergence, fast running time per iteration, and near-optimal sample complexity. Finally, we complement our theoretical results with numerical experiments.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel