Joint Code-Frequency Index Modulation for IoT and Multi-User Communications

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Joint Code-Frequency Index Modulation for IoT and Multi-User Communications

Minh Au; Georges Kaddoum; Md Sahabul Alam; Ertugrul Basar; Francois Gagnon

In this paper we propose a family of index modulation systems which can operate with low-power consumption and low operational complexity for multi-user communication. This is particularly suitable for non-time sensitive Internet of Things (IoT) applications such as telemetry, smart metering, and soon. The proposed architecture reduces the peak-to-average-power ratio (PAPR) of orthogonal frequency-division multiplexing (OFDM)-based schemes without relegating the data rate. In the proposed scheme, we implement joint code-frequency-index modulation (CFIM) by considering code and frequency domains for index-modulation (IM). After introducing and analysing the structure of the CFIM, we derive closed-form expressions of the bit error rate (BER) performance over Rayleigh fading channels and we provide extensive simulation results to validate our outcomes. To better exhibit the particularities of the proposed scheme, the PAPR and complexity are thoroughly examined. The obtained results show that the PAPR is reduced compared to conventional OFDM-like IM-based schemes. Therefore, the proposed system is more likely to operate in the linear regime, which can in turn be implemented into low-cost devices with cost effective amplifiers. In addition, the concept is extended to synchronous multi-user communication networks, where full functionality is obtained by using orthogonal spreading codes. With the characteristics demonstrated in this work, the proposed system would constitute an exceptional nominee for IoT applications where low-complexity, low-power consumption and high data rate are paramount.

SPS on Twitter

  • THIS FRIDAY: Join our Vice President-Membership, K.V.S. Hari, and Membership Development Committee Chair, Arash Moh…
  • The SPACE webinar series continues tomorrow, Tuesday, 11 August at 11 AM ET with Dr. Xiao Xiang Zhu presenting "Dat…
  • now accepting submissions for special sessions, tutorials, and papers! The conference is set for June 2…
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special I…
  • NEW WEBINAR: Join us on Friday, 14 August at 11:00 AM ET for the 2021 SPS Membership Preview! Society leadership wi…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar