Sketching Data Sets for Large-Scale Learning: Keeping only what you need

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Sketching Data Sets for Large-Scale Learning: Keeping only what you need

Remi Gribonval; Antoine Chatalic; Nicolas Keriven; Vincent Schellekens; Laurent Jacques; Philip Schniter

Big data can be a blessing: with very large training data sets it becomes possible to perform complex learning tasks with unprecedented accuracy. Yet, this improved performance comes at the price of enormous computational challenges. Thus, one may wonder: Is it possible to leverage the information content of huge data sets while keeping computational resources under control? Can this also help solve some of the privacy issues raised by large-scale learning? This is the ambition of compressive learning, where the data set is massively compressed before learning. Here, a "sketch" is first constructed by computing carefully chosen nonlinear random features [e.g., random Fourier (RF) features] and averaging them over the whole data set. Parameters are then learned from the sketch, without access to the original data set. This article surveys the current state of the art in compressive learning, including the main concepts and algorithms, their connections with established signal processing methods, existing theoretical guarantees on both information preservation and privacy preservation, and important open problems. For an extended version of this article that contains additional references and more in-depth discussions on a variety of topics, see [1].

SPS on Twitter

  • The Brain Space Initiative Talk Series continues on Friday, 29 October when Dr. Selin Aviyente presents "Cross-Freq…
  • Join the Brain Space Initiative for another virtual mixing event on Wednesday, 27 October! Grab a coffee and meet w…
  • We're proud to sponsor a new journal, IEEE Transactions on Quantum Engineering, publishing regular, review, and tut…
  • We are now seeking mentors and students for the launch of a new initiative, Mentoring Experiences for Underrepresen…
  • This Wednesday, 13 October, join the Women in Signal Processing Committee for an IEEE Day webinar, "Promoting Diver…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar