The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Many contemporary applications in signal processing and machine learning give rise to structured nonconvex nonsmooth optimization problems that can often be tackled by simple iterative methods quite effectively. One of the keys to understanding such a phenomenon-and, in fact, a very difficult conundrum even for experts-lies in the study of "stationary points" of the problem in question. Unlike smooth optimization, for which the definition of a stationary point is rather standard, there are myriad definitions of stationarity in nonsmooth optimization. In this article, we provide an introduction to different stationarity concepts for several important classes of nonconvex nonsmooth functions, discuss the geometric interpretations of these concepts, and further clarify their relationships. We then demonstrate the relevance of these constructions in some representative applications and indicate how they could affect the performance of iterative methods for addressing these applications.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.