The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing

By: 
Andreas Bar, Jonas Lohdefink, Nikhil Kapoor, Serin John Varghese, Fabian Huger, Peter Schlicht, Tim Fingscheidt

Enabling autonomous driving (AD) can be considered one of the biggest challenges in today?s technology. AD is a complex task accomplished by several functionalities, with environment perception being one of its core functions. Environment perception is usually performed by combining the semantic information captured by several sensors, i.e., lidar or camera. The semantic information from the respective sensor can be extracted by using convolutional neural networks (CNNs) for dense prediction. In the past, CNNs constantly showed stateof-the-art performance on several vision-related tasks, such as semantic segmentation of traffic scenes using nothing but the red-green-blue (RGB) images provided by a camera. Although CNNs obtain state-of-the-art performance on clean images, almost imperceptible changes to the input, referred to as adversarial perturbations, may lead to fatal deception. The goal of this article is to illuminate the vulnerability aspects of CNNs used for semantic segmentation with respect to adversarial attacks, and share insights into some of the existing known adversarial defense strategies. We aim to clarify the advantages and disadvantages associated with applying CNNs for environment perception in AD to serve as a motivation for future research in this field.

SPS on Twitter

  • The 2021 IEEE International Symposium on Biomedical Imaging virtual platform is live, featuring pre-recorded talks… https://t.co/JfRAvO5hqr
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special Iss… https://t.co/fQ25UHWidg
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec… https://t.co/AuMC67sUKd
  • The SPACE Webinar Series continues Tuesday, 6 April at 10:00 AM EDT when Dr. Ivan Dokmanić presents "Learning the G… https://t.co/4coVRWm0lc
  • NEW SPS WEBINAR: Join us on Wednesday, 28 April at 1:00 PM EDT when Dr. Fernando Gama presents "Graph Neural Networ… https://t.co/UI6Oi2PYYi

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar