TCI Volume 7 | 2021

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

2021

TCI Volume 7 | 2021

Given a spectral library, sparse unmixing aims to estimate the fractional proportions in each pixel of a hyperspectral image scene. However, the ever-growing dimensionality of spectral dictionaries strongly limits the performance of sparse unmixing algorithms. In this study, we propose a novel dictionary pruning (DP) approach to improve the performance of sparse unmixing algorithms, making them more accurate and time-efficient.

In cell and molecular biology, the fusion of green fluorescent protein (GFP) and phase contrast (PC) images aims to generate a composite image, which can simultaneously display the functional information in the GFP image related to the molecular distribution of biological living cells and the structural information in the PC image such as nucleus and mitochondria. In this paper, we propose a detail preserving cross network (DPCN), which consists of a structural-guided functional feature extraction branch (SFFEB), a functional-guided structural feature extraction branch (FSFEB) and a detail preserving module (DPM), to address the GFP and PC image fusion issue.

We present an all-in-one camera model that encompasses the architectures of most existing compressive-sensing light-field cameras, equipped with a single lens and multiple amplitude coded masks that can be placed at different positions between the lens and the sensor. The proposed model, named the equivalent multi-mask camera (EMMC) model, enables the comparison between different camera designs, e.g using monochrome or CFA-based sensors, single or multiple acquisitions, or varying pixel sizes, via a simple adaptation of the sampling operator. 

Recently, deep learning-based compressive imaging (DCI) has surpassed conventional compressive imaging in reconstruction quality and running speed. While multi-scale sampling has shown superior performance over single-scale, research in DCI has been limited to single-scale sampling. Despite training with single-scale images, DCI tends to favor low-frequency components similar to conventional multi-scale sampling, especially at low subrates. 

In this article, we propose a method to reconstruct the total electromagnetic field in an arbitrary two-dimensional scattering environment without any prior knowledge of the incident field or the permittivities of the scatterers. However, we assume that the region between the scatterers is homogeneous and that the approximate geometry describing the environment is known.

Most digital cameras use specialized autofocus sensors, such as phase detection, lidar or ultrasound, to directly measure focus state. However, such sensors increase cost and complexity without directly optimizing final image quality. This paper proposes a new pipeline for image-based autofocus and shows that neural image analysis finds focus 5-10x faster than traditional contrast enhancement. 

Non-line-of-sight (NLOS) imaging and tracking is an emerging technology that allows the shape or position of objects around corners or behind diffusers to be recovered from transient, time-of-flight measurements. However, existing NLOS approaches require the imaging system to scan a large area on a visible surface, where the indirect light paths of hidden objects are sampled.

SPS on Twitter

  • The Brain Space Initiative Talk Series continues this Friday, 24 September at 11:00 AM EDT when Dr. Jessica Damoise… https://t.co/DHFOzEXvMJ
  • The 2022 membership year has begun! Join our community of more than 17,000 signal processing and data science profe… https://t.co/arfJKa0oaW
  • Join us this Tuesday, 21 September for the Women in Signal Processing event at ICIP 2021! Registration available on… https://t.co/hXXZ61zLBe
  • The SPACE Webinar Series continues this Tuesday, 21 September when Dr. Bin Dong presents "Data- and Task-Driven CT… https://t.co/dkwz0lb2Jk
  • Join SPS President Ahmed Tewfik on Wednesday, 22 September for the IEEE Signal Processing Society Town Hall in conj… https://t.co/31AOCWXvam

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar