Total Utility Metric Based Dictionary Pruning for Sparse Hyperspectral Unmixing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Total Utility Metric Based Dictionary Pruning for Sparse Hyperspectral Unmixing

By: 
Sefa Kucuk; Seniha Esen Yuksel

Given a spectral library, sparse unmixing aims to estimate the fractional proportions in each pixel of a hyperspectral image scene. However, the ever-growing dimensionality of spectral dictionaries strongly limits the performance of sparse unmixing algorithms. In this study, we propose a novel dictionary pruning (DP) approach to improve the performance of sparse unmixing algorithms, making them more accurate and time-efficient. We quantify the relative importance of each spectral dictionary atom using the total utility metric at virtually no cost. In this way, we have quantitative insights into how well the elements in the dictionary represent the hyperspectral scene. We evaluate the performance of the proposed dictionary pruning approach on several simulated data sets and one real data. We also compare the experimental results with two well-known dictionary pruning methods both visually and quantitatively and demonstrate the superiority of our proposed method through extensive experimental analysis.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel