The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In real-world applications, different kinds of learning and prediction errors are likely to incur different costs for the same system. Moreover, in practice, the cost label information is often available only for a few training samples. In a semi-supervised setting, label propagation is critical to infer the cost information for unlabeled training data. The existing methods typically conduct label propagation independently ahead of supervised cost-sensitive learning. The precomputed label information is kept fixed, which may become suboptimal in the subsequent learning process and hence degrade the overall system performance. In this paper, we develop a unified cost-sensitive framework for semi-supervised face recognition that can jointly optimize the inferred label information and the classifier in an iterative manner. Our experiments on face benchmark datasets demonstrate that in comparison with the state-of-the-art methods for label propagation and cost-sensitive learning, the proposed approach can significantly improve the overall system performance, especially in terms of classification errors associated with high costs.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.