Distributed Bernoulli Filtering Using Likelihood Consensus

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Distributed Bernoulli Filtering Using Likelihood Consensus

Giuseppe Papa; Rene Repp; Florian Meyer; Paolo Braca; Franz Hlawatsch

We consider the detection and tracking of a target in a decentralized sensor network. The presence of the target is uncertain, and the sensor measurements are affected by clutter and missed detections. The state-evolution model and the measurement model may be nonlinear and non-Gaussian. For this practically relevant scenario, we propose a particle-based distributed Bernoulli filter (BF) that provides to each sensor approximations of the Bayes-optimal estimates of the target presence probability and the target state. The proposed method uses all the measurements in the network while requiring only local intersensor communication. This is enabled by an extension of the likelihood consensus method that reaches consensus on the likelihood function under both the target presence and target absence hypotheses. We also propose an adaptive pruning of the likelihood expansion coefficients that yields a significant reduction of intersensor communication. Finally, we present a new variant of the likelihood consensus method that is suited to networks containing star-connected sensor groups. Simulation results show that in challenging scenarios, including a heterogeneous sensor network with significant noise and clutter, the performance of the proposed distributed BF approaches that of the optimal centralized multisensor BF. We also demonstrate that the proposed distributed BF outperforms a state-of-the-art distributed BF at the expense of a higher amount of intersensor communication.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel