TSIPN Featured Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TSIPN Featured Articles

This paper considers the problem of decentralized consensus optimization over a network, where each node holds a strongly convex and twice-differentiable local objective function. Our goal is to minimize the sum of the local objective functions and find the exact optimal solution using only local computation and neighboring communication.

Novel Monte Carlo estimators are proposed to solve both the Tikhonov regularization (TR) and the interpolation problems on graphs. These estimators are based on random spanning forests (RSF), the theoretical properties of which enable to analyze the estimators’ theoretical mean and variance.

In this paper, we investigate the resource allocation problem for a full-duplex (FD) massive multiple-input-multiple-output (mMIMO) multi-carrier (MC) decode and forward (DF) relay system which serves multiple MC single-antenna half-duplex (HD) nodes. In addition to the prior studies focusing on maximizing the sum-rate and energy efficiency, we focus on minimizing the overall delivery time for a given set of communication tasks to the user terminals.

The problem of graph learning concerns the construction of an explicit topological structure revealing the relationship between nodes representing data entities, which plays an increasingly important role in the success of many graph-based representations and algorithms in the field of machine learning and graph signal processing.

In this paper, we consider the problem of bandwidth-constrained distributed estimation of a Gaussian vector with linear observation model. Each sensor makes a scalar noisy observation of the unknown vector, employs a multi-bit scalar quantizer to quantize its observation, and maps it to a digitally modulated symbol.

Distributed machine learning algorithms enable learning of models from datasets that are distributed over a network without gathering the data at a centralized location. While efficient distributed algorithms have been developed under the assumption of faultless networks, failures that can render these algorithms nonfunctional occur frequently in the real world. 

In this paper, a multi-hypothesis distributed detection technique with non-identical local detectors is investigated. Here, for a global event, some of the sensors/detectors can observe the whole set of hypotheses, whereas the remaining sensors can either see only some aspects of the global event or infer more than one hypothesis as a single hypothesis.

We study the problem of distributed filtering for state space models over networks, which aims to collaboratively estimate the states by a network of nodes. Most of existing works on this problem assume that both process and measurement noises are Gaussian and their covariances are known in advance. In some cases, this assumption breaks down and no longer holds.

Expander recovery is an iterative algorithm designed to recover sparse signals measured with binary matrices with linear complexity. In the paper, we study the expander recovery performance of the bipartite graph with girth greater than 4, which can be associated with a binary matrix with column correlations equal to either 0 or 1. 

A key challenge in designing distributed particle filters is to minimize the communication overhead without compromising tracking performance. In this paper, we present two distributed particle filters that achieve robust performance with low communication overhead.


SPS on Twitter

  • New SPS Webinar! On Friday, 29 October, join Dr. Jérôme Gilles for "Empirical Wavelets," based on his original arti… https://t.co/ZuZ7qwO9Pc
  • The Brain Space Initiative Talk Series continues on Friday, 29 October when Dr. Selin Aviyente presents "Cross-Freq… https://t.co/Jxgu2soJCc
  • Join the Brain Space Initiative for another virtual mixing event on Wednesday, 27 October! Grab a coffee and meet w… https://t.co/KA3kuPUGw0
  • We're proud to sponsor a new journal, IEEE Transactions on Quantum Engineering, publishing regular, review, and tut… https://t.co/cZskrh9cvX
  • We are now seeking mentors and students for the launch of a new initiative, Mentoring Experiences for Underrepresen… https://t.co/i9SarNyKm9

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar