Kernel-Based Graph Learning From Smooth Signals: A Functional Viewpoint

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Kernel-Based Graph Learning From Smooth Signals: A Functional Viewpoint

By: 
Xingyue Pu; Siu Lun Chau; Xiaowen Dong; Dino Sejdinovic

The problem of graph learning concerns the construction of an explicit topological structure revealing the relationship between nodes representing data entities, which plays an increasingly important role in the success of many graph-based representations and algorithms in the field of machine learning and graph signal processing. In this paper, we propose a novel graph learning framework that incorporates prior information along node and observation side, and in particular the covariates that help to explain the dependency structures in graph signals. To this end, we consider graph signals as functions in the reproducing kernel Hilbert space associated with a Kronecker product kernel, and integrate functional learning with smoothness-promoting graph learning to learn a graph representing the relationship between nodes. The functional learning increases the robustness of graph learning against missing and incomplete information in the graph signals. In addition, we develop a novel graph-based regularisation method which, when combined with the Kronecker product kernel, enables our model to capture both the dependency explained by the graph and the dependency due to graph signals observed under different but related circumstances, e.g. different points in time. The latter means the graph signals are free from the i.i.d. assumptions required by the classical graph learning models. Experiments on both synthetic and real-world data show that our methods outperform the state-of-the-art models in learning a meaningful graph topology from graph signals, in particular with heavy noise, missing values, and multiple dependency.

SPS on Twitter

  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special Iss… https://t.co/fQ25UHWidg
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec… https://t.co/AuMC67sUKd
  • The SPACE Webinar Series continues Tuesday, 6 April at 10:00 AM EDT when Dr. Ivan Dokmanić presents "Learning the G… https://t.co/4coVRWm0lc
  • NEW SPS WEBINAR: Join us on Wednesday, 28 April at 1:00 PM EDT when Dr. Fernando Gama presents "Graph Neural Networ… https://t.co/UI6Oi2PYYi
  • The 2021 IEEE International Workshop on Machine Learning for Signal Processing Data Challenge is now live! The L3DA… https://t.co/PX0VNZaVY6

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar