Characterization of Analytic Wavelet Transforms and a New Phaseless Reconstruction Algorithm

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Characterization of Analytic Wavelet Transforms and a New Phaseless Reconstruction Algorithm

Nicki Holighaus; Günther Koliander; Zdeněk Průša; Luis Daniel Abreu

We obtain a characterization of all wavelets leading to analytic wavelet transforms (WT). The characterization is obtained as a byproduct of the theoretical foundations of a new method for wavelet phase reconstruction from magnitude-only coefficients. The cornerstone of our analysis is an expression of the partial derivatives of the continuous WT, which results in phase-magnitude relationships similar to the short-time Fourier transform setting and valid for the generalized family of Cauchy wavelets. We show that the existence of such relations is equivalent to analyticity of the WT up to a multiplicative weight and a scaling of the mother wavelet. The implementation of the new phaseless reconstruction method is considered in detail and compared to previous methods. It is shown that the proposed method provides significant performance gains and a great flexibility regarding accuracy versus complexity. In addition, we discuss the relation between scalogram reassignment operators and the wavelet transform phase gradient and present an observation on the phase around zeros of the WT.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel