Direction-of-Arrival Estimation for Large Antenna Arrays With Hybrid Analog and Digital Architectures

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Direction-of-Arrival Estimation for Large Antenna Arrays With Hybrid Analog and Digital Architectures

By: 
Ruoyu Zhang; Byonghyo Shim; Wen Wu

The large antenna arrays with hybrid analog and digital (HAD) architectures can provide a large aperture with low cost and hardware complexity, resulting in enhanced direction-of-arrival (DOA) estimation and reduced power consumption. This paper investigates the trade-off between DOA estimation and power consumption in large antenna arrays with HAD architectures. Particularly, the DOA estimation problem of fully-connected, sub-connected (SC), and switches-based (SE) hybrid architectures is formulated into a unified expression, with the compression matrix in a time-varying form. Based on this model, we derive a dynamic maximum likelihood (D-ML) estimator that is suitable for both HAD and conventional fully digital (FD) structures, and the closed-form expression of Cramér-Rao bound (CRB) to evaluate the performance limit of the D-ML estimator for different HAD structures. The theoretical CRB analysis in the single-source case reveals that, the SC structure has the ability to achieve approximately the same performance as the FD structures at DOAs around zero, but suffers from the inherent angle ambiguity because of the antenna grouping. In addition, we propose a dynamic SC (D-SC) structure that is proved to eliminate the angle ambiguity with time-varying phase shifters, and a switch optimization (SWO) algorithm to minimize the CRB of SE structures. Finally, we introduce a new metric, DOA efficiency, to measure the trade-off between the DOA estimation performance and power consumption of different structures. Simulation results verify our theoretical analysis and the superiority of the proposed D-SC structure and the SWO algorithm.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel