Distributed Design of Robust Kalman Filters Over Corrupted Channels

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Distributed Design of Robust Kalman Filters Over Corrupted Channels

By: 
Xingkang He; Karl Henrik Johansson; Haitao Fang

We study distributed filtering for a class of uncertain systems over corrupted communication channels. We propose a distributed robust Kalman filter with stochastic gains, through which upper bounds of the conditional mean square estimation errors are calculated online. We present a robust collective observability condition, under which the mean square error of the distributed filter is proved to be uniformly upper bounded if the network is strongly connected. For better performance, we modify the filer by introducing a switching fusion scheme based on a sliding window. It provides a smaller upper bound of the conditional mean square error. Numerical simulations are provided to validate the theoretical results and show that the filter scales to large networks.

SPS on Twitter

  • CALL FOR PROPOSALS: The IEEE Workshop on Automatic Speech Recognition and Understanding is now soliciting proposals… https://t.co/gzYreLyroa
  • authors have started uploading their conference slides and posters to IEEE SPS SigPort! Get a sneak pea… https://t.co/XGvnfdrHIb
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is accepting papers for a Special Issue… https://t.co/E89M7bEFlu
  • Voting for the IEEE SPS 5-Minute Video Clip Contest is now live! Check out the three finalists and cast your vote f… https://t.co/fbqgHY1tw7
  • CALL FOR PROPOSALS: Now seeking proposals for the 2024 IEEE International Workshop on Machine Learning for Signal P… https://t.co/l7V1bF2qhT

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar