Skip to main content

TSP Volume 69 | 2021

Wirtinger Flow Meets Constant Modulus Algorithm: Revisiting Signal Recovery for Grant-Free Access

In this work, we analyze the convergence of constant modulus algorithm (CMA) in blindly recovering multiple signals to facilitate grant-free wireless access. The CMA typically solves a non-convex problem by utilizing stochastic gradient descent. The iterative convergence of CMA can be affected by additive channel noise and finite number of samples, which is a problem not fully investigated previously.

Read more

Privacy-Preserving Distributed Projection LMS for Linear Multitask Networks

Wedevelop a privacy-preserving distributed projection least mean squares (LMS) strategy over linear multitask networks, where agents’ local parameters of interest or tasks are linearly related. Each agent is interested in not only improving its local inference performance via in-network cooperation with neighboring agents, but also protecting its own individual task against privacy leakage. In our proposed strategy, at each time instant, each agent sends a noisy estimate, which is its local intermediate estimate corrupted by a zero-mean additive noise, to its neighboring agents.

Read more

Probabilistic PCA From Heteroscedastic Signals: Geometric Framework and Application to Clustering

This paper studies a statistical model for heteroscedastic ( i.e. , power fluctuating) signals embedded in white Gaussian noise. Using the Riemannian geometry theory, we propose an unified approach to tackle several problems related to this model. The first axis of contribution concerns parameters (signal subspace and power factors) estimation, for which we derive intrinsic Cramér-Rao bounds and propose a flexible Riemannian optimization algorithmic framework in order to compute the maximum likelihood estimator (as well as other cost functions involving the parameters).

Read more

Receiver Design With Reduced DOF in Frequency Domain for Target Detection Under Gaussian Clutter

This paper addresses the problem of target detection against a background of Gaussian clutter by using frequency snapshots with reduced degrees of freedom (DOF). We derive the optimal detector and detection performance under the Neyman-Pearson criterion for general frequency snapshot selection with arbitrary DOF. When the clutter statistics are unknown, we use a uniformly random frequency snapshot selection method and show how the DOF employed affects the detection performance. 

Read more

Power Allocation for Coexisting Multicarrier Radar and Communication Systems in Cluttered Environments

In this paper, power allocation is examined for the coexistence of a radar and a communication system that employ multicarrier waveforms. We propose two designs for the considered spectrum sharing problem by maximizing the output signal-to-interference-plus-noise ratio (SINR) at the radar receiver while maintaining certain communication throughput and power constraints.

Read more

Filtering in Pairwise Markov Model With Student's t Non-Stationary Noise With Application to Target Tracking

Hidden Markov models are widely used for target tracking, where the process and measurement noises are usually modeled as independent Gaussian distributions for mathematical simplicity. However, the independence and Gaussian assumptions do not always hold in practice. For example, in a typical target tracking application, a radar is utilized to track a non-cooperative target. 

Read more