Receiver Design With Reduced DOF in Frequency Domain for Target Detection Under Gaussian Clutter

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Receiver Design With Reduced DOF in Frequency Domain for Target Detection Under Gaussian Clutter

By: 
Yang Li; Qian He; Rick S. Blum; Alexander M. Haimovich

This paper addresses the problem of target detection against a background of Gaussian clutter by using frequency snapshots with reduced degrees of freedom (DOF). We derive the optimal detector and detection performance under the Neyman-Pearson criterion for general frequency snapshot selection with arbitrary DOF. When the clutter statistics are unknown, we use a uniformly random frequency snapshot selection method and show how the DOF employed affects the detection performance. When the clutter return follows a stationary Gaussian distribution with slowly varying power spectral density, the optimal selection is derived. When the clutter is composed of reflected versions of the transmitted waveforms, a greedy-based method for selecting the frequency snapshots is presented. Numerical experiments show that a receiver with reduced DOF can lead to detection performance which is very close to that of the receiver with full DOF.

SPS on Twitter

  • SPS is proud to participate in IEEE's new Multiple Society Discount Program! Join two or more participating societi… https://t.co/BnwcM7O7iu
  • IEEE Day is October 4th. Celebrate IEEE Day by attending a local event. Visit the IEEE Day site for a complete list… https://t.co/mESJHTn7ek
  • The Biomedical Imaging and Signal Processing Webinar Series continues on Tuesday, 4 October when Selin Aviyente pre… https://t.co/Gl4bHlWbqh
  • On Wednesday, 26 October, join Dr. DeLiang Wang for a new SPS webinar, "Neural Spectrospatial Filter" - register no… https://t.co/vUkiWC4Am8
  • Join Dr. Peilan Wang and Dr Jun Fang for "Channel State Information Acquisition for Intelligent Reflecting Surface-… https://t.co/jOhyA10xuG

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar