Optimal Mean-Reverting Portfolio With Leverage Constraint for Statistical Arbitrage in Finance

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Optimal Mean-Reverting Portfolio With Leverage Constraint for Statistical Arbitrage in Finance

The optimal mean-reverting portfolio (MRP) design problem is an important task for statistical arbitrage, also known as pairs trading, in the financial markets. The target of the problem is to construct a portfolio of the underlying assets (possibly with an asset selection target) that can exhibit a satisfactory mean reversion property and a desirable variance property. In this paper, the optimal MRP design problem is studied under an investment leverage constraint representing the total investment positions on the underlying assets. A general problem formulation is proposed by considering the design targets subject to a leverage constraint. To solve the problem, a unified optimization framework based on the successive convex approximation method is developed. The superior performance of the proposed formulation and the algorithms are verified through numerical simulations on both synthetic data and real market data.

Table of Contents:

TSP Featured Articles

SPS on Facebook

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar